If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4u^2-53u+49=0
a = 4; b = -53; c = +49;
Δ = b2-4ac
Δ = -532-4·4·49
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-53)-45}{2*4}=\frac{8}{8} =1 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-53)+45}{2*4}=\frac{98}{8} =12+1/4 $
| 7w-15w-16=-17 | | 5x*x-2x-11=0 | | (j)/(6)-9=(5)/(6) | | -4(1-4p)=108 | | 5w+10=65 | | x+2/x=0 | | 0.04(17)+0.01t-0.02(17+t)=0 | | f(-3)=-2f+6 | | 7(4b+2)2=-184 | | 5-1(2x+6)=-4 | | 6x+10=-60-4 | | 1.28=((x-46)/15) | | (x-5)²+3(x-5)=0 | | 6v-(5)/(8)=(7)/(8) | | 1/2x+1/4=1/3x+5/4 | | u-7.9=9.99 | | x-5-6=0 | | -17+7=x+6 | | 5x+17=2x+62 | | 1/2x+1/4=1/3+5/4 | | 4x+10x=55+11 | | 8^2x+1=16 | | h=7/10(220-25) | | 2x=12-11 | | 2a+5=3/2 | | 3+8x=-45 | | 6y=2(y+7) | | 3a(4=a) | | 2/3(9v=6) | | x*45=30 | | -3/4(4c-9)+7/8c=23/16 | | 2a−87a=1 |